Advertisement
Advertisement


What exactly is RESTful programming?


Question

What exactly is RESTful programming?

2017/03/16
1
4007
3/16/2017 7:47:01 PM

Accepted Answer

An architectural style called REST (Representational State Transfer) advocates that web applications should use HTTP as it was originally envisioned. Lookups should use GET requests. PUT, POST, and DELETE requests should be used for mutation, creation, and deletion respectively.

REST proponents tend to favor URLs, such as

http://myserver.com/catalog/item/1729

but the REST architecture does not require these "pretty URLs". A GET request with a parameter

http://myserver.com/catalog?item=1729

is every bit as RESTful.

Keep in mind that GET requests should never be used for updating information. For example, a GET request for adding an item to a cart

http://myserver.com/addToCart?cart=314159&item=1729

would not be appropriate. GET requests should be idempotent. That is, issuing a request twice should be no different from issuing it once. That's what makes the requests cacheable. An "add to cart" request is not idempotent—issuing it twice adds two copies of the item to the cart. A POST request is clearly appropriate in this context. Thus, even a RESTful web application needs its share of POST requests.

This is taken from the excellent book Core JavaServer faces book by David M. Geary.

2018/03/27
759
3/27/2018 9:14:52 AM


RESTful programming is about:

  • resources being identified by a persistent identifier: URIs are the ubiquitous choice of identifier these days
  • resources being manipulated using a common set of verbs: HTTP methods are the commonly seen case - the venerable Create, Retrieve, Update, Delete becomes POST, GET, PUT, and DELETE. But REST is not limited to HTTP, it is just the most commonly used transport right now.
  • the actual representation retrieved for a resource is dependent on the request and not the identifier: use Accept headers to control whether you want XML, HTTP, or even a Java Object representing the resource
  • maintaining the state in the object and representing the state in the representation
  • representing the relationships between resources in the representation of the resource: the links between objects are embedded directly in the representation
  • resource representations describe how the representation can be used and under what circumstances it should be discarded/refetched in a consistent manner: usage of HTTP Cache-Control headers

The last one is probably the most important in terms of consequences and overall effectiveness of REST. Overall, most of the RESTful discussions seem to center on HTTP and its usage from a browser and what not. I understand that R. Fielding coined the term when he described the architecture and decisions that lead to HTTP. His thesis is more about the architecture and cache-ability of resources than it is about HTTP.

If you are really interested in what a RESTful architecture is and why it works, read his thesis a few times and read the whole thing not just Chapter 5! Next look into why DNS works. Read about the hierarchical organization of DNS and how referrals work. Then read and consider how DNS caching works. Finally, read the HTTP specifications (RFC2616 and RFC3040 in particular) and consider how and why the caching works the way that it does. Eventually, it will just click. The final revelation for me was when I saw the similarity between DNS and HTTP. After this, understanding why SOA and Message Passing Interfaces are scalable starts to click.

I think that the most important trick to understanding the architectural importance and performance implications of a RESTful and Shared Nothing architectures is to avoid getting hung up on the technology and implementation details. Concentrate on who owns resources, who is responsible for creating/maintaining them, etc. Then think about the representations, protocols, and technologies.

2016/11/02

This is what it might look like.

Create a user with three properties:

POST /user
fname=John&lname=Doe&age=25

The server responds:

200 OK
Location: /user/123

In the future, you can then retrieve the user information:

GET /user/123

The server responds:

200 OK
<fname>John</fname><lname>Doe</lname><age>25</age>

To modify the record (lname and age will remain unchanged):

PATCH /user/123
fname=Johnny

To update the record (and consequently lname and age will be NULL):

PUT /user/123
fname=Johnny
2017/02/06

A great book on REST is REST in Practice.

Must reads are Representational State Transfer (REST) and REST APIs must be hypertext-driven

See Martin Fowlers article the Richardson Maturity Model (RMM) for an explanation on what an RESTful service is.

Richardson Maturity Model

To be RESTful a Service needs to fulfill the Hypermedia as the Engine of Application State. (HATEOAS), that is, it needs to reach level 3 in the RMM, read the article for details or the slides from the qcon talk.

The HATEOAS constraint is an acronym for Hypermedia as the Engine of Application State. This principle is the key differentiator between a REST and most other forms of client server system.

...

A client of a RESTful application need only know a single fixed URL to access it. All future actions should be discoverable dynamically from hypermedia links included in the representations of the resources that are returned from that URL. Standardized media types are also expected to be understood by any client that might use a RESTful API. (From Wikipedia, the free encyclopedia)

REST Litmus Test for Web Frameworks is a similar maturity test for web frameworks.

Approaching pure REST: Learning to love HATEOAS is a good collection of links.

REST versus SOAP for the Public Cloud discusses the current levels of REST usage.

REST and versioning discusses Extensibility, Versioning, Evolvability, etc. through Modifiability

2013/09/08

What is REST?

REST stands for Representational State Transfer. (It is sometimes spelled "ReST".) It relies on a stateless, client-server, cacheable communications protocol -- and in virtually all cases, the HTTP protocol is used.

REST is an architecture style for designing networked applications. The idea is that, rather than using complex mechanisms such as CORBA, RPC or SOAP to connect between machines, simple HTTP is used to make calls between machines.

In many ways, the World Wide Web itself, based on HTTP, can be viewed as a REST-based architecture. RESTful applications use HTTP requests to post data (create and/or update), read data (e.g., make queries), and delete data. Thus, REST uses HTTP for all four CRUD (Create/Read/Update/Delete) operations.

REST is a lightweight alternative to mechanisms like RPC (Remote Procedure Calls) and Web Services (SOAP, WSDL, et al.). Later, we will see how much more simple REST is.

Despite being simple, REST is fully-featured; there's basically nothing you can do in Web Services that can't be done with a RESTful architecture. REST is not a "standard". There will never be a W3C recommendataion for REST, for example. And while there are REST programming frameworks, working with REST is so simple that you can often "roll your own" with standard library features in languages like Perl, Java, or C#.

One of the best reference I found when I try to find the simple real meaning of rest.

http://rest.elkstein.org/

2013/10/28

REST is using the various HTTP methods (mainly GET/PUT/DELETE) to manipulate data.

Rather than using a specific URL to delete a method (say, /user/123/delete), you would send a DELETE request to the /user/[id] URL, to edit a user, to retrieve info on a user you send a GET request to /user/[id]

For example, instead a set of URLs which might look like some of the following..

GET /delete_user.x?id=123
GET /user/delete
GET /new_user.x
GET /user/new
GET /user?id=1
GET /user/id/1

You use the HTTP "verbs" and have..

GET /user/2
DELETE /user/2
PUT /user
2009/03/22

Source: https://stackoverflow.com/questions/671118
Licensed under: CC-BY-SA with attribution
Not affiliated with: Stack Overflow
Email: [email protected]