Advertisement
Advertisement


How do multiple clients connect simultaneously to one port, say 80, on a server?


Question

I understand the basics of how ports work. However, what I don't get is how multiple clients can simultaneously connect to say port 80. I know each client has a unique (for their machine) port. Does the server reply back from an available port to the client, and simply state the reply came from 80? How does this work?

2014/02/17
1
404
2/17/2014 3:07:55 PM

Accepted Answer

First off, a "port" is just a number. All a "connection to a port" really represents is a packet which has that number specified in its "destination port" header field.

Now, there are two answers to your question, one for stateful protocols and one for stateless protocols.

For a stateless protocol (ie UDP), there is no problem because "connections" don't exist - multiple people can send packets to the same port, and their packets will arrive in whatever sequence. Nobody is ever in the "connected" state.

For a stateful protocol (like TCP), a connection is identified by a 4-tuple consisting of source and destination ports and source and destination IP addresses. So, if two different machines connect to the same port on a third machine, there are two distinct connections because the source IPs differ. If the same machine (or two behind NAT or otherwise sharing the same IP address) connects twice to a single remote end, the connections are differentiated by source port (which is generally a random high-numbered port).

Simply, if I connect to the same web server twice from my client, the two connections will have different source ports from my perspective and destination ports from the web server's. So there is no ambiguity, even though both connections have the same source and destination IP addresses.

Ports are a way to multiplex IP addresses so that different applications can listen on the same IP address/protocol pair. Unless an application defines its own higher-level protocol, there is no way to multiplex a port. If two connections using the same protocol simultaneously have identical source and destination IPs and identical source and destination ports, they must be the same connection.

2019/09/08
463
9/8/2019 2:45:23 AM


TCP / HTTP Listening On Ports: How Can Many Users Share the Same Port

So, what happens when a server listen for incoming connections on a TCP port? For example, let's say you have a web-server on port 80. Let's assume that your computer has the public IP address of 24.14.181.229 and the person that tries to connect to you has IP address 10.1.2.3. This person can connect to you by opening a TCP socket to 24.14.181.229:80. Simple enough.

Intuitively (and wrongly), most people assume that it looks something like this:

    Local Computer    | Remote Computer
    --------------------------------
    <local_ip>:80     | <foreign_ip>:80

    ^^ not actually what happens, but this is the conceptual model a lot of people have in mind.

This is intuitive, because from the standpoint of the client, he has an IP address, and connects to a server at IP:PORT. Since the client connects to port 80, then his port must be 80 too? This is a sensible thing to think, but actually not what happens. If that were to be correct, we could only serve one user per foreign IP address. Once a remote computer connects, then he would hog the port 80 to port 80 connection, and no one else could connect.

Three things must be understood:

1.) On a server, a process is listening on a port. Once it gets a connection, it hands it off to another thread. The communication never hogs the listening port.

2.) Connections are uniquely identified by the OS by the following 5-tuple: (local-IP, local-port, remote-IP, remote-port, protocol). If any element in the tuple is different, then this is a completely independent connection.

3.) When a client connects to a server, it picks a random, unused high-order source port. This way, a single client can have up to ~64k connections to the server for the same destination port.

So, this is really what gets created when a client connects to a server:

    Local Computer   | Remote Computer           | Role
    -----------------------------------------------------------
    0.0.0.0:80       | <none>                    | LISTENING
    127.0.0.1:80     | 10.1.2.3:<random_port>    | ESTABLISHED

Looking at What Actually Happens

First, let's use netstat to see what is happening on this computer. We will use port 500 instead of 80 (because a whole bunch of stuff is happening on port 80 as it is a common port, but functionally it does not make a difference).

    netstat -atnp | grep -i ":500 "

As expected, the output is blank. Now let's start a web server:

    sudo python3 -m http.server 500

Now, here is the output of running netstat again:

    Proto Recv-Q Send-Q Local Address           Foreign Address         State  
    tcp        0      0 0.0.0.0:500             0.0.0.0:*               LISTEN      - 

So now there is one process that is actively listening (State: LISTEN) on port 500. The local address is 0.0.0.0, which is code for "listening for all". An easy mistake to make is to listen on address 127.0.0.1, which will only accept connections from the current computer. So this is not a connection, this just means that a process requested to bind() to port IP, and that process is responsible for handling all connections to that port. This hints to the limitation that there can only be one process per computer listening on a port (there are ways to get around that using multiplexing, but this is a much more complicated topic). If a web-server is listening on port 80, it cannot share that port with other web-servers.

So now, let's connect a user to our machine:

    quicknet -m tcp -t localhost:500 -p Test payload.

This is a simple script (https://github.com/grokit/dcore/tree/master/apps/quicknet) that opens a TCP socket, sends the payload ("Test payload." in this case), waits a few seconds and disconnects. Doing netstat again while this is happening displays the following:

    Proto Recv-Q Send-Q Local Address           Foreign Address         State  
    tcp        0      0 0.0.0.0:500             0.0.0.0:*               LISTEN      -
    tcp        0      0 192.168.1.10:500        192.168.1.13:54240      ESTABLISHED -

If you connect with another client and do netstat again, you will see the following:

    Proto Recv-Q Send-Q Local Address           Foreign Address         State  
    tcp        0      0 0.0.0.0:500             0.0.0.0:*               LISTEN      -
    tcp        0      0 192.168.1.10:500        192.168.1.13:26813      ESTABLISHED -

... that is, the client used another random port for the connection. So there is never confusion between the IP addresses.

2017/07/25

Normally, for every connecting client the server forks a child process that communicates with the client (TCP). The parent server hands off to the child process an established socket that communicates back to the client.

When you send the data to a socket from your child server, the TCP stack in the OS creates a packet going back to the client and sets the "from port" to 80.

2010/07/25

Multiple clients can connect to the same port (say 80) on the server because on the server side, after creating a socket and binding (setting local IP and port) listen is called on the socket which tells the OS to accept incoming connections.

When a client tries to connect to server on port 80, the accept call is invoked on the server socket. This creates a new socket for the client trying to connect and similarly new sockets will be created for subsequent clients using same port 80.

Words in italics are system calls.

Ref

http://www.scs.stanford.edu/07wi-cs244b/refs/net2.pdf

2016/03/04

Source: https://stackoverflow.com/questions/3329641
Licensed under: CC-BY-SA with attribution
Not affiliated with: Stack Overflow
Email: [email protected]