Advertisement
Advertisement


What does -1 mean in numpy reshape?


Question

A numpy matrix can be reshaped into a vector using reshape function with parameter -1. But I don't know what -1 means here.

For example:

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
b = numpy.reshape(a, -1)

The result of b is: matrix([[1, 2, 3, 4, 5, 6, 7, 8]])

Does anyone know what -1 means here? And it seems python assign -1 several meanings, such as: array[-1] means the last element. Can you give an explanation?

2019/12/05
1
442
12/5/2019 7:19:59 AM


Used to reshape an array.

Say we have a 3 dimensional array of dimensions 2 x 10 x 10:

r = numpy.random.rand(2, 10, 10) 

Now we want to reshape to 5 X 5 x 8:

numpy.reshape(r, shape=(5, 5, 8)) 

will do the job.

Note that, once you fix first dim = 5 and second dim = 5, you don't need to determine third dimension. To assist your laziness, python gives the option of -1:

numpy.reshape(r, shape=(5, 5, -1)) 

will give you an array of shape = (5, 5, 8).

Likewise,

numpy.reshape(r, shape=(50, -1)) 

will give you an array of shape = (50, 4)

You can read more at http://anie.me/numpy-reshape-transpose-theano-dimshuffle/

2018/04/23

According to the documentation:

newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions.

2013/09/09

numpy.reshape(a,newshape,order{}) check the below link for more info. https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

for the below example you mentioned the output explains the resultant vector to be a single row.(-1) indicates the number of rows to be 1. if the

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
b = numpy.reshape(a, -1)

output:

matrix([[1, 2, 3, 4, 5, 6, 7, 8]])

this can be explained more precisely with another example:

b = np.arange(10).reshape((-1,1))

output:(is a 1 dimensional columnar array)

array([[0],

   [1],
   [2],
   [3],
   [4],
   [5],
   [6],
   [7],
   [8],
   [9]])

b = np.arange(10).reshape((1,-1))

output:(is a 1 dimensional row array)

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])

2017/01/02

It is fairly easy to understand. The "-1" stands for "unknown dimension" which can should be infered from another dimension. In this case, if you set your matrix like this:

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])

Modify your matrix like this:

b = numpy.reshape(a, -1)

It will call some deafult operations to the matrix a, which will return a 1-d numpy array/martrix.

However, I don't think it is a good idea to use code like this. Why not try:

b = a.reshape(1,-1)

It will give you the same result and it's more clear for readers to understand: Set b as another shape of a. For a, we don't how much columns it should have(set it to -1!), but we want a 1-dimension array(set the first parameter to 1!).

2017/02/27

Long story short: you set some dimensions and let NumPy set the remaining(s).

(userDim1, userDim2, ..., -1) -->>

(userDim1, userDim1, ..., TOTAL_DIMENSION - (userDim1 + userDim2 + ...))
2018/12/08