Advertisement
Advertisement


Converting strings to floats in a DataFrame


Question

How to covert a DataFrame column containing strings and NaN values to floats. And there is another column whose values are strings and floats; how to convert this entire column to floats.

2013/05/24
1
114
5/24/2013 7:34:23 AM


You can try df.column_name = df.column_name.astype(float). As for the NaN values, you need to specify how they should be converted, but you can use the .fillna method to do it.

Example:

In [12]: df
Out[12]: 
     a    b
0  0.1  0.2
1  NaN  0.3
2  0.4  0.5

In [13]: df.a.values
Out[13]: array(['0.1', nan, '0.4'], dtype=object)

In [14]: df.a = df.a.astype(float).fillna(0.0)

In [15]: df
Out[15]: 
     a    b
0  0.1  0.2
1  0.0  0.3
2  0.4  0.5

In [16]: df.a.values
Out[16]: array([ 0.1,  0. ,  0.4])
2013/05/24

In a newer version of pandas (0.17 and up), you can use to_numeric function. It allows you to convert the whole dataframe or just individual columns. It also gives you an ability to select how to treat stuff that can't be converted to numeric values:

import pandas as pd
s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)
s = pd.Series(['apple', '1.0', '2', -3])
pd.to_numeric(s, errors='ignore')
pd.to_numeric(s, errors='coerce')
2016/07/09

df['MyColumnName'] = df['MyColumnName'].astype('float64') 
2016/07/09

you have to replace empty strings ('') with np.nan before converting to float. ie:

df['a']=df.a.replace('',np.nan).astype(float)
2019/04/16

Here is an example

                            GHI             Temp  Power Day_Type
2016-03-15 06:00:00 -7.99999952505459e-7    18.3    0   NaN
2016-03-15 06:01:00 -7.99999952505459e-7    18.2    0   NaN
2016-03-15 06:02:00 -7.99999952505459e-7    18.3    0   NaN
2016-03-15 06:03:00 -7.99999952505459e-7    18.3    0   NaN
2016-03-15 06:04:00 -7.99999952505459e-7    18.3    0   NaN

but if this is all string values...as was in my case... Convert the desired columns to floats:

df_inv_29['GHI'] = df_inv_29.GHI.astype(float)
df_inv_29['Temp'] = df_inv_29.Temp.astype(float)
df_inv_29['Power'] = df_inv_29.Power.astype(float)

Your dataframe will now have float values :-)

2018/12/11